Combinatorial properties of classical forcing notions

نویسندگان

چکیده

برای دانلود باید عضویت طلایی داشته باشید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Combinatorial Properties of Classical Forcing Notions

We investigate the effect of adding a single real (for various forcing notions adding reals) on cardinal invariants associated with the continuum. We show: (1) adding an eventually different or a localization real adjoins a Luzin set of size continuum and a mad family of size ω1; (2) Laver and Mathias forcing collapse the dominating number to ω1, and thus two Laver or Mathias reals added iterat...

متن کامل

Combinatorial Properties of Hechler Forcing

Using a notion of rank for Hechler forcing we show: 1) assuming ω 1 = ω L 1 , there is no real in V [d] which is eventually different from the reals in L[d], where d is Hechler over V ; 2) adding one Hechler real makes the invariants on the left-hand side of Cichoń’s diagram equal ω1 and those on the right-hand side equal 2 ω and produces a maximal almost disjoint family of subsets of ω of size...

متن کامل

Further Combinatorial Properties of Cohen Forcing

The combinatorial properties of Cohen forcing imply the existence of a countably closed, א2-c.c. forcing notion P which adds a C(ω2)-name Q for a σ-centered poset such that forcing with Q over V P×C(ω2) adds a real not split by V C(ω2) ∩ [ω] and preserves that all subfamilies of size ω1 of the Cohen reals are unbounded.

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

ژورنال

عنوان ژورنال: Annals of Pure and Applied Logic

سال: 1995

ISSN: 0168-0072

DOI: 10.1016/0168-0072(94)e0028-z